Mycorrhizal Inoculation Effect on Water Deficit Tolerance of Cashew Seedlings (Anacardium occidentale L.) and Soil Nutrients Availability
Asian Journal of Agricultural and Horticultural Research, Volume 9, Issue 4,
Page 112-122
DOI:
10.9734/ajahr/2022/v9i4199
Abstract
This research aims to evaluate the effect of Arbuscular Mycorrhizal Fungi (AMF) in improving the resilience of cashew seedlings to water deficit and soil nutritional status. The split-plot experimental design was used. The treatments consist of two factors, the two-level water regime (30% useful water reserve and 70% useful water reserve) in main plots and the three-level inoculation (no inoculation, Glomus mosseae and Glomus aggregatum) in subplots. Each treatment is replicated nine times. The study was conducted at Agronomic Experimentation Station of the University of Lomé between June to November 2020. Induction of deficit hydric started three months after the setting up of the trial and lasted two months. At the end of the water shortage cycle, growth parameters were measured and leaf and soil samples were taken for laboratory analysis. Parameters assessed include mycorrhization rate, relative water content, leaf proline content, malondialdehyde content, mycorrhizal dependency, plant biomass and mineral content of the soil. The results show good mycorrhization rate, 70.86% for Glomus aggregatum and 54.92% for Glomus mosseae with mycorrhiza dependency of 12.87% and 11.74% respectively. Mycorrhizal inoculation reduced water stress symptoms in addition to the plant's intrinsic protective mechanisms. This was reflected in lower leaf proline and malondialdehyde content and improved relative water content of stressed but inoculated plants compared to uninoculated plants. The AMF also improved the availability of mineral nutrients in the soil, which resulted in better growth of inoculated plants under both water stress and normal watering conditions. The overall assessment of the research suggested that AMF can be used to improve cashew seedlings resistance against drought and to improve their growth through improvement of soil nutrient availability.
- Cashew seedlings
- water deficit
- arbuscular mycorrhizal fungi
- proline
- malondialdehyde
- soil quality
How to Cite
References
Djaman K, Sharma V, Rudnick D, Koudahe K, Irkmak S, Amouzou KA et al. Spatial and temporal variation in precipitation in Togo. Int. J. Hydrol. 2017; I(4):97-105.
Gadédjisso-Tossou A, Avellán T, Schütze N. Potential of deficit and supplemental irrigation under climate variability in northern Togo, West Africa. Water (Switzerland). 2018;10(12).
DOI: https://doi.org/10.3390/w10121803.
Azam-Ali S, Judge E. Small-scale cashew nut processing. Rome; 2001.
Adewi E, Badameli KMS, Dubreuil V. Evolution des saisons des pluies potentiellement utiles au Togo de 1950 à 2000. Climatologie. 2010;7:89-107.
DOI:https://doi.org/10.4267/climatologie.489.
Lubis MY, Pitono J, Wahid P. Effect of water stress on plant growth and production of cashew. J. Penelit. Tanam. Ind. 1999;5(1):2155-2163.
Assih A, Nenonene AY. Cashew nut based production systems in Togo: agricultural practices, constraints, and improvement levers. Agric. Socio-Economics J. 2022; 22(3):229-234.
Bello OD, Akponikpè PBI, Ahoton EL, Saidou A, Ezin AV, Kpadonou GE et al. Trend analysis of climate change and its impacts on cashew nut production (Anacardium occendale L.) in Benin. Octa J. Environ. Res. 2016;4(3):181-197.
Balogoun I, Ahoton EL, Saïdou A, Bello OD, Ezin V, Amadji GL, et al. Effect of climatic factors on cashew (Anacardium occidentale L.) productivity in Benin (West Africa). J. Earth Sci. Clim. Change. 2016;7:1-10.
DOI: 10.4172/2157-7617.1000329
Oliveira VH, Miranda RN, Lima RN, Cavalcante RRR. Effect of irrigation frequency on cashew nut yield in Northeast Brazil. Sci. Hortic. (Amsterdam). 2006; 108(4):403-407.
Smith SE, Read DJ. Mycorrhizal symbiosis. 2nd edn., Academic P. San Diego, CA, USA; 1997.
Sahouri AL-H. La Mycorhize arbuscules: quels bénéfices pour l'homme et son environnement dans un contexte de développement durable ? Rev. Sci. Technol. 2013;26:6–19.
Ananthakrishnan G, Ravikumar R, Girija S, Ganapathi A. Selection of efficient arbuscular mycorrhizal fungi in the rhizosphere of cashew and their application in the cashew nursery. Sci. Hortic. (Amsterdam). 2004;100:369- 375.
Suada IK, Prima E, Sritamin M, Adiartayasa IW, Susrama IGK, Wirawan IGP. Isolation and identification of arbuscular mycorrhizal fungi (AMF) in cashew plants (Anacardium occidentale L.) in Datah village, Abang district of Karangasem regency. Int. J. Biosci. Biotechnol. 2018;5(2):168-175. DOI: https://doi.org/10.24843/IJBB.2018.v05.i02.p10.
Beniken L, Omari F, Dahan R, Van Damme P, Benkirane R, Benyahia H. Evaluation de l’effet du stress hydrique et du portegreffe sur la clémentine Citrus reticulata Swingle var. Sidi Aissa. J. Appl. Biosci. 2013;71:5692-5704.
Guissou T, Babana AH, Sanon KB, Ba AM. Effects of arbuscular mycorrhizae on growth and mineral nutrition of greenhouse propagated fruit trees from diverse geographic provenances. Biotechnol. Agron. Soc. Environ. 2016;20(3):417- 426.
Ibiremo OS, Ogunlade MO, Oyetunji OJ, Adewale BD. Dry matter yield and nutrient uptake of cashew seedlings as influenced by arbuscular mycorrhizal inoculation, organic and inorganic fertilizers in two soils in Nigeria. ARPN J. Agric. Biol. Sci. 2012;7(3):196-205.
Baize D. Guide des analyses en pédologie. INRA Paris; 2000.
Bokobana A, Toundou O, Odah K, Dossou KSS,Tozo K. Enhancement of proline content and antioxidant enzyme activities induced by drought stress in maize (Zea mays L.) by application of compost. Int. J. Biol. Chem. Sci. 2019;13(7):2978-2990.
Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970;55(1):158-161.
Clarke JM, McCaig TN. Evaluation of Techniques for Screening for Drought Resistance in Wheat 1. Crop Sci. 1982;22(3):503-506.
Bogdanov S. Harmonised Methods of the International Honey Commission. Swiss Bee Research Center, FAM, Liebefeld, CH-3003 Bern,Switzerland; 1999.
Bradford MMB. A rapid sensitive method for the quantification of microgram quantities ofprotein utilising the principle of protein-Dye Binding. Anal Biochem. 1976;72:248-254.
Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. Arch. Biochem. Biophys. 1968;125:189-198.
Plenchette C, Fortin JA, Furlan V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility - I. Mycorrhizal dependency under field conditions. Plant Soil. 1983;70:199-209.
Teulat B, Monneveux P, Wery J, Borries C, Souyris I, Charrier A and al. Relationships between relative water content and growth parameters under water stress in barley : a QTL study. New Phytol. 1997;137:99-107.
Garbaye J, Guehl J.-M. Le Rôle des ectomycorhizes dans l’utilisation de l’eau par les arbres forestiers. Rev. For. Française. 1997;49(sp):110-120.
Munns R. Comparative physiology of salt and water stress. Plant, Cell Environ. 2002;25:239-250.
Steduto P, Albrizio R, Giorio P, Sorrentino G. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environ. Exp. Bot. 2000;44:243-255.
Müller A, Ngwene B, Peiter E, George E. Quantity and distribution of arbuscular mycorrhizal fungal storage organs within dead roots. Mycorrhiza. 2017;27:201-210.
DOI: 10.1007/s00572-016-0741-0.
Wu HH, Zou YN, Rahman MM, Ni QD, Wu QS. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 2017;7:1-10. DOI: 10.1038/srep42389.
Kaur G, Asthir B. Proline: a key player in plant abiotic stress tolerance. Biol. Plant. 2014;20(10):1–11.
Bajji M, Lutts S, Kinet JM. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci. 2001;160:669-681.
Fortin AJA, Plenchette C, Piché Y. La nouvelle révolution verte. Quae; 2016.
Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K. Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur. J. Soil Biol. 2010;46:151- 156.
Wu QS, Xia RX. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 2006;163:417-425.
Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P et al. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 2016;171(2):1009-1023.
DOI: https://doi.org/10.1104/pp.16.00307
Kandowangko NY, Suryatmana GIAT, Nurlaeny N, Simanungkalit RDM. Proline and Abscisic Acid content in droughted corn plant inoculated with Azospirillum sp. and Arbuscular Mycorrhizae Fungi. HAYATI J. Biosci. 2009;16(1):15-20. DOI: 10.4308/hjb.16.1.15.
Hernández JA, Jiménez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell Environ. 2000;23:853-862.
Katsuhara M, Otsuka T, Ezaki B. Salt stress-induced lipid peroxidation is reduced by glutathione S -transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci. 2005;169:369- 373.
Michel F, Bonnefont-Rousselot D, Mas E, Drai J, Thérond P. Biomarqueurs de la peroxydation lipidique: Aspects analytiques. Ann. Biol. Clin. (Paris). 2008; 66(6):605-620.
Jiang Y, Huang B. Drought and heat stress injury to two cool-Season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001;41:436- 442.
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang LN. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci. 2019;10:1–15.
DOI:https://doi.org/10.3389/fpls.2019.01068.
Hamza N. Application des mycorhizes arbusculaires en culture maraîchère cas de la pastèque (Citrullus lanatus). Mémoire de Magister, Université Ferhat Abbas Sétif, Algérie; 2014.
Thioye B. Amélioration de la croissance et de la production fruitière de Ziziphus mauritiana Lam. par l'inoculation mycorhizienne dans deux vergers au Sénégal. Thèse de doctorat, Université Cheikh Anta DIOP de Dakar, Sénégal; 2017.
Dalpé Y. Les mycorhizes : un outil de protection des plantes mais non une panacée. Phytoprotection. 2005;86(1):53-59.
DOI: https://doi.org/10.7202/011715ar
IPTRID. Conférence électronique sur la salinisation : extension de la salinisation et stratégies de prévention et réhabilitation; 2006.
Gobat JM, Arogno M, Matthey W. Le sol vivant, 2e Edition. Presses Polytechniques Universitaires Romandes, Lausanne; 2003.
Lambers H, Raven JA, Shaver GR, Smith SE. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008;23(2):95-103.
DOI: 10.1016/j.tree.2007.10.008.
Duponnois R, Hafidi M, Wahbi S, Sanon A, Galiana A, Baudoin E et al. La symbiose mycorhizienne et la fertilité des sols dans les zones arides : un outil biologique sous-exploité dans la gestion des terres de la zone sahélo-saharienne. In Dia A, Duponnois R, editors. La Grande Muraille Verte : capitalisation des recherches et valorisation des savoirs locaux. IRD, Marseille; 2012.
DOI:10.4000/books.irdeditions.3304
-
Abstract View: 144 times
PDF Download: 51 times