Identification of Egyptian Mangrove Species Based on DNA Barcoding

Eglal M. Said *

Breeding Research Department of Fruit Trees, Ornamental and Woody Plants, Horticulture Research Institute, ARC, Giza, Egypt.

M. I. Bahnasy

Foresty and Timber Trees Department, Horticulture Research Institute, ARC, Giza, Egypt.

*Author to whom correspondence should be addressed.


Abstract

Aims: Mangroves are woody trees or shrubs that grow in the intertidal zone and are distributed along tropical and subtropical coasts. These plants are resilient to various environmental challenges; they are also one of the most efficient terrestrial and coastal ecosystem for carbon fixation and storage. In recent years, mangrove reforestation has attracted much attention as a strategy to reduce the effects of climate change. In Egypt, there are two types of mangroves, Rhizophora mucronata and Avicennia marina, between 30°N and 30°S of the equator. Mangrove management presents a difficult task, particularly when it comes to managing molecular mangroves for long-term sustainability. With the impact of human activity on mangrove ecosystems increasing each year, molecular research on mangrove correlates remains to be conducted. For this reason, using DNA barcoding technology to quickly identify species, mangrove ecosystems may be protected.

Methodology: In this work, the two Egyptian mangrove species were assessed through morphological, cytological, and molecular approaches. Two universal DNA barcodes, rbcL and ITS, were examined to identify their efficacy for Egyptian mangrove species identification and phylogenetic reconstruction.

Results: According to pairwise alignments, the rbcL region had the highest level of variability (73.2%), whereas the ITS region was the least variable (11.96%). The selected Egyptian mangrove species can potentially be distinguished by barcoding loci rbcL and ITS due to the existence of distinctive variable sites.

Keywords: Mangrove, species, DNA barcode, rbcL, ITS


How to Cite

Said , Eglal M., and M. I. Bahnasy. 2023. “Identification of Egyptian Mangrove Species Based on DNA Barcoding”. Asian Journal of Agricultural and Horticultural Research 10 (4):131-45. https://doi.org/10.9734/ajahr/2023/v10i4254.

Downloads

Download data is not yet available.

References

Poungparn S, Komiyama A, Sangteian T, Maknual C, Patanaponpaiboon P., Suchewaboripont V. High primary productivity under submerged soil raises the net ecosystem productivity of a secondary mangrove forest in eastern Thailand. Journal of Tropical Ecology. 2012; 28. DOI: 10.1017/S0266467412000132

Jones RA. The necessity of the unconscious. Journal for the Theory of Social Behaviour. 2002; 32:344-365. DOI:https://doi.org/10.1111/1468-5914.00191

Spalding M, Kainuma M, Collins L. World Atlas of Mangroves. A collaborative project of ITTO, ISME, FAO, UNEP-WCMC, UNESCO-MAB, UNU-INWEH and TNC. London (UK): Earthscan, London. 2010; 319. Available: data.unep- wcmc.org/datasets/22

Giri C, Ochieng E, Tieszen L, Zhu Z, Singh A, Loveland T, Masek J, Duke N. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography. 2010; 154-159.

Basheer MA, El Kafrawy SB, Mekawy AA. Identification of mangrove plant using hyperspectral remote sensing data along the Red Sea, Egypt. Egyptian Journal of Aquatic Biology & Fisheries. 2019;23 (1):27 – 36.

Alongi D, Chong V, Pfitzner J, Trott LA, Tirendi F, Di¬xon P, Brunskill G. Sediment accumulation and organic material flux in a managed mangrove ecosy¬stem: Estimates of land-ocean-atmosphere exchange in peninsular Malaysia. Mar. Geol., 2004; 208:383–402.

Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011;4(5):293–297.

Kristensen E, Bouillon S, Dittmar T, Marchand C. Organic carbon dynamics in mangrove ecosystems: a review. Aquat. Bot. 2008;89 (2):201–219.

FAO. Status and trends in mangrove area extent worldwide. Wilkie, M.L. & Fortuna, S. Forest Resources Assessment Working Paper No. 63. Forest Resources Division. Food and Agricultural Organization, Rome, Italy; 2003.

Sacristán JB, Johansen JB, Duarte CM, Daffonchio D, HoteitI, McCabe MF. Mangrove distribution and afforestation potential in the Red Sea. Science of the total Environment. 2022; 843(15):157098.

Zahran MA, Willis AJ. The vegetation of Egypt. Springer, 2nd edition. 2009; 456.

Persga. Status of Mangroves in the Red Sea and Gulf of Aden. Technical Series Number 11, PERSGA, Jeddah. (Prepared by Khalil ASM). 2004;66.

Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R. Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos. Trans. R. Soc. London Ser. B. 2005;360:1805-1811

Kress JW. Plant DNA barcodes: Applications today and in the future. Front. Plant Syst. Evol. 2017;55(4):291-307.

Xiaomeng Mao, Wei Xie, Xinnian Li, Suhua Shi, Zixiao Guo. Establishing community-wide DNA barcode references for conserving mangrove forests in China. BMC Plant Biology. 2021; 21:571. DOI: https://doi.org/10.1186/s12870-021-03349-z

Kress WJ, Erickson DL, Swenson NG, Thompson J, Uriarte M, Zimmerman JK. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS ONE; 2010.

Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA. 2014; 102:8369–8374.

Liao BW, Zhang QM. Area, distribution and species composition of mangroves in China. Wetl. Sci. 2014;12:435–440.

Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land Plants:evaluation of rbcL in a multigene tiered approach. Can. J. Bot. 2006; 84:335–341.

Saddeet AA, Rahul AJ, Kundan K. Assessment of mangroves from Goa, west coast India using DNA barcode. Springer Plus. 2016; 5:1554. DOI: 10.1186/s40064-016-3191-4

Cottenie A, Verloo M, Kiekens I, Velghe G, Camerlynck R. Chemical analysis of plants and soils. Lab. of Analytical and Agro. State, Univ. Ghent. Belgium; 1982.

Sass JE. Botanical micro technique. The low a state Univ. Press, Ames, Iowa. 1964; 228.

Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics. 2003; 1:2-3.

Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987; 4: 406-425.

Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985; 39:783-791.

Theodoridis S, Stefanaki A, Tezcan M, Aki C, Kokkini S, Vlachonasios KE. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Cesme-Karaburun Peninsula (Turkey). Mol. Ecol. Resour. 2012; 12:620±633. DOI: 10.1111/j.1755-0998.2012.03129.x PMID: 22394710

Tamura K, Stecher G, Kumar S. MEGA 11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution; 2021. DOI: https: //doi.org/10.1093/molbev/msab120

Almahasheer H, Aljowair A, Duarte CM, Irigoien X. Decadal stability of Red Sea mangroves. Estuar. Coast. Shelf Sci. 2016; 169: 164–172.

Almahasheer H, Serrano O, Duarte CM, Arias-Ortiz A, Masque P, Irigoien X. Low carbon sink capacity of Red Sea mangroves. Sci. Rep. 2017; 7(1):1–10.

Charrua AB, Bandeira SO, Catarino S, Cabral P, Romeiras MM. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 2020; 189:105145.

Quisthoudt K, Schmitz N, Randin CF, Dahdouh-Guebas F, Robert EM, Koedam N. Temperature variation among mangrove latitudinal range limits worldwide. Trees. 2012; 26 (6):1919–1931.

Burchett MD, Clarke CJ, Field CD, Pulkownik A. Growth and respiration in two mangrove species at a range of salinities. Physiologia Plantarum. 1989; 75:299- 303.

Osland MJ, Feher LC, Griffith KT, Cavanaugh KC, Enwright NM, Day RH, Stagg CL, Krauss KW, Howard RJ, Graces JB, Rogers K. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecological Monographs. 2017; 87(2): 341–359.

Hebert PD, Cywinska A, Ball SL, DeWaard JR. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2003; 270: 313.

Pei NC. Building a subtropical forest community phylogeny based on plant DNA barcodes from Dinghushan plot. Plant Divers. Resour. 2012; 34: 263–270. (In Chinese) [CrossRef]

Tripathi AM, Tyagi A, Kumar A, Singh A, Singh S, Chaudhary LB, Roy S. The internal transcribed spacer (its) region and trnH-psbA [corrected] are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS ONE. 2013; 8: e57934. [CrossRef] [PubMed]

Kang Y, Deng Z, Zang R, Long W. DNA barcoding analysis and phylogenetic relationships of tree pecies in tropical cloud forests. Sci. Rep. 2017;7:12564. [CrossRef] [PubMed]

Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, Percy DM, Hajibabaei M, Barrett SCH. Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode. Methods Appl. Fluores. 2011; 2:333–340. [CrossRef]

De Vere N, Rich TC, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite D, Davies H, Allainguillaume J, Ronca S. DNA barcoding the native flowering plants and conifers of Wales. PLoS ONE. 2012; 7:e37945 [CrossRef] [PubMed]

Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc. Natl. Acad. Sci. USA. 2009; 106: 18621–18626. [CrossRef]

Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB. Comparative analysis of a large dataset indicates that internal transcribed spacer (its) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA. 2011;108:19641– 19646.

Sass C, Little DP, Stevenson DW, Specht CD. DNA barcoding in the cycadales: Testing the potential of proposed barcoding markers for species identification of cycads. PLoS ONE. 2007; 7, 2: e1154. [CrossRef] [PubMed]

Li X, Yang Y, Henry RJ, Rossetto M, Wang Y. Plant DNA barcoding: from gene to genome: Plant identification using DNA barcodes. Biological Reviews. 2015; 90: 157-166. DOI: 10.1111/brv.12104

Wu F, Li M, Liao B, Shi X, Xu Y. DNA barcoding analysis and phylogenetic relation of mangroves in Guangdong Province, China. Forests. 2019; 10(1): 56. DOI: 10.3390/f10010056

Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106:12794-12797. DOI:10.1073/pnas.0905845106.

de Melo Moura CC, Brambach F, Jair Bado KJH, Krutovsky KV, Kreft H. Integrating DNA barcoding and traditional taxonomy for the identification of Dipterocarps in Remnant Lowland Forests of Sumatra. Plants. 2019; 8 (11):461. DOI:10.3390/plants8110461.

CBOL Plant Wording Group. DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America. 2009;106: 12794-12797. DOI: 10.1073/pnas.0905845106

Girma G, Spillane C, Gedil M. DNA barcoding of the main cultivated yams and selected wild species in the genus Dioscorea. Journal of Systematics and Evolution. 2016; 54: 228-237. DOI: 10.1111/jse.12183

Gogoi B, Wann SB, Saikia SP. DNA barcodes for delineating Clerodendrum species of North East India. Scientific Reports. 2020;10: 13490. DOI: 10.1038/s41598-020-70405-3

Pham MP, Tran VH, Vu DD, Nguyen QK, Shah SNM. Phylogenetics of native conifer species in Vietnam based on two chloroplast gene regions rbcL and matK. Czech Journal of Genetics and Plant Breeding. 2021; 57: 58-66. DOI: 10.17221/88/2020-CJGPB

Dev SA, Sijimol K, Prathibha PS, Sreekumar VB, Muralidharan EM. DNA barcoding as a valuable molecular tool for the certification of planting materials in bamboo. Biotech. 2020; 10(2): 59. DOI: 10.1007/s13205-019-2018-8

Unsal SG, Ciftci YO, Eken BU, Velioglu E, Marco GD. Intraspecific discrimination study of wild cherry populations from North-Western Turkey by DNA barcoding approach. Tree Genetics and Genomes. 2019; 15:16. DOI:10.1007/s11295-019- 1323-z

Saha K, Dholakia BB, Sinha RK. DNA barcoding of selected Zingiberaceae species from North-East India. Journal of Plant Biochemistry and Biotechnology. 2020; 29:494-502. DOI: 10.1007/ s13562-020-00563-y

Lu MM, Ci XQ, Yang GP, Li J. DNA barcoding of subtropical forest trees—A study from Ailao mountains nature reserve, Yunnan, China. Plant Divers. Resour. 2013; 35:733–741.

Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS One. 2011;6(5): e19254. DOI: 10.1371/journal.pone.0019254

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33:1870–4.