Exploring Alternative Products for Tomato Septoria lycopersici Control

Monteiro F. P. *

EPAGRI – Agricultural Research and Rural Extension Enterprise of Santa Catarina, Abílio Franco, 1500, Bom Sucesso, PO Box 591, Zip code 89.501-032, Caçador, Santa Catarina, Brazil.

Ogoshi C.

EPAGRI – Agricultural Research and Rural Extension Enterprise of Santa Catarina, Abílio Franco, 1500, Bom Sucesso, PO Box 591, Zip code 89.501-032, Caçador, Santa Catarina, Brazil.

Mallmann G.

EPAGRI – Agricultural Research and Rural Extension Enterprise of Santa Catarina, Abílio Franco, 1500, Bom Sucesso, PO Box 591, Zip code 89.501-032, Caçador, Santa Catarina, Brazil.

Valmorbida J.

EPAGRI – Agricultural Research and Rural Extension Enterprise of Santa Catarina, Abílio Franco, 1500, Bom Sucesso, PO Box 591, Zip code 89.501-032, Caçador, Santa Catarina, Brazil.

Wamser A. F.

EPAGRI – Agricultural Research and Rural Extension Enterprise of Santa Catarina, Abílio Franco, 1500, Bom Sucesso, PO Box 591, Zip code 89.501-032, Caçador, Santa Catarina, Brazil.

*Author to whom correspondence should be addressed.


The septoriose (Septoria lycopersici) is an important disease in tomato production and can lead to significant losses. Although there are active ingredients registered for the control of this disease, there is little study about products with alternatives for the control of the fungus S. lycopersici. Thus, the objective of this work was to study the effect of alternative products in controlling the septoriose. The rationale for the study was to find efficient products that are less harmful to the environment. The study was conducted at the experimental station of EPAGRI in the state of Santa Catarina, Brazil. Twelve products were tested to control Septoria: Bacillus subtilis QST 713 (274 mg/L a.i.), Bacillus subtilis QST 713 autoclaved (274 mg/L a.i.), lime sulfur (10,000 mg/L c.p.), benzalkonium chloride (250 mg/L a.i.), mixed mineral fertilizer ( 2,000 mg/L c.p.), sodium hypochlorite (320 mg/L a.i.), peracetic acid (5,440 mg/L a.i.), Bordeaux mixture (3,000 mg/L c.p.), Viçosa mixture (3,000 mg/L c.p.), Trichoderma harzianum Rifai ESALQ-1306 (600 mg/L a.i.), acibenzolar-S-methyl (25 mg/L a.i.), potassium phosphite (2,000 mg/L a.i. with 1,340 mg/L phosphorous acid) and biostimulant (200 mg/L c.p.). The doses used were based on label, previous tests in vitro and in phytotoxicity events in tomato plants. In the in vitro experiments, the products that were not able to promote the formation of an inhibition halo were: biostimulant, potassium phosphite, acibenzolar-S-methyl, Trichoderma harzianum, Viçosa mixture and Bordeaux mixture. The products B. subtilis, lime sulfur, benzalkonium chloride, mixed mineral fertilizer, peracetic acid, sodium hypochlorite and autoclaved B. subtilis were able to inhibit fungal growth in vitro, forming a halo of inhibition. The chemical fungicides mancozeb + pyraclostrobin + fluxapyroxad were used as a positive control. In vivo, the positive control was able to control 100% of the incidence and severity of Septoria and no symptoms were observed in the plants. For incidence, the products that controlled at least 80% of the disease were lime sulfur and mixed mineral fertilizer. When considering the disease severity, the products that controlled at least 80% of the disease were: lime sulfur, mixed mineral fertilizer, Bacillus subtilis QST713 and benzalkonium chloride. The products Bordeaux mixture, Viçosa mixture, sodium hypochlorite and peracetic acid caused phytotoxicity when applied to tomato plants. Although lime sulfur has shown promise, its successive application can lead to a decrease in the photosynthetic rate.

Keywords: Chemical control, Solanum lycopersicum, tomato disease, Septoria lycopersici, septoria leaf spot

How to Cite

Monteiro F. P., Ogoshi C., Mallmann G., Valmorbida J., and Wamser A. F. 2023. “Exploring Alternative Products for Tomato Septoria Lycopersici Control”. Asian Journal of Agricultural and Horticultural Research 10 (4):496-506. https://doi.org/10.9734/ajahr/2023/v10i4289.


Download data is not yet available.


Sutton BC, Waterston JM. Septoria lycopersici. Kew: Common wealth Mycological Institute. Descriptions of pathogenic fungi and bacteria. 1966;89:1-2.

Stevenson WR. Septoria leaf spot. In: Jones JB, Jones JP, Stall et al. Compendium of tomato diseases St. Paul: APS; 1991.

Martin-Hernandez AM, Dufresne M, Hugouvieux V, Melton R et al. Effects of targeted replacement of the tomatinase gene on the interaction of Septoria lycopersici with tomato plants. Molecular Plant-Microbe Interactions. 2000;13:1301-1311.

Kurozawa C, Pavan MA. Doenças do tomateiro. In: Kimati H, Amorim L, Rezende JAM, Bergamin Filho et al. Manual de fitopatologia: doenças das plantas cultivadas. São Paulo, Brazil: Agronômica Ceres. 2005:607-626.

Elmer WH, Ferrandino FJ. Influence of spore density, leaf age, temperature, and dew periods on Septoria leaf spot of tomato. Plant Disease. 1995;79:287-290.

Sohi MS, Sokhi SS. Morphological, physiological and pathological studies in Septoria lycopersici. Indian Phytopathology. 1974;26:666-673.

Parker SK, Nutter JFW, Gleason ML. 1997 – Directional spread of Septoria leaf spot in tomato rows. Plant Disease. 1997;81:272-276.

Douglas SM. Septoria leaf spot of tomato. Journal of the Connecticut Agricultural Experiment Station. 2008;1-3.

Monteiro FP, Ogoshi C, Cardoso DA, Perazzoli V, Maindra LC, Pinto FAMF, Mallmann G, Valmorbida J, Wamser AF. Fungicides in the control of septoriose in tomato plant. Plant Pathology & Quarantine. 2021a;11:173-190.

Ragupathi KP, Renganayaki PR, Sundareswaran S, Kumar SM, Kamalakannan A. Biocontrol agents against early blight (Alternaria solani) of tomato. The Pharma Innovation Journal. 2020;9:283-285.

Ramírez-Cariño HF, Guadarrama-Mendoza PC, Sánchez-López V, Cuervo-Parra JA, Ramírez-Reyes T, Dunlap CA, Valadez-Blanco R. Biocontrol of Alternaria alternata and Fusarium oxysporum by Trichoderma asperelloides and Bacillus paralicheniformis in tomato plants. Antonie van Leeuwenhoek. 2020;113:1247-1261.

Mates ADPK, de Carvalho Pontes N, de Almeida Halfeld-Vieira B. Bacillus velezensis GF267 as a multi-site antagonist for the control of tomato bacterial spot. Biological Control. 2019; 137:104013.

Vitti A, Pellegrini E, Nali C, Lovelli S, Sofo A, Valerio M, Nuzzaci M. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus. Frontiers in Plant Science. 2016;7:1520.

Amer MA, Abou-El-Seoud II. Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato. Communications in Agricultural and Applied Biological Sciences. 2008;73: 217-232.

Silva BN, Picanço BBM, Hawerroth C, Silva LC, Rodrigues FÁ. Physiological and biochemical insights into induced resistance on tomato against Septoria leaf spot by a phosphite combined with free amino acids. Physiological and Molecular Plant Pathology. 2022;120:101854.

Su L, Feng H, Mo X, Sun J, Qiu P, Liu Y, Shen Q. Potassium phosphite enhanced the suppressive capacity of the soil microbiome against the tomato pathogen Ralstonia solanacearum. Biology and Fertility of Soils. 2022;58:553-563.

Mulugeta T, Abreha K, Tekie H, Mulatu B, Yesuf M, Andreasson E, ... Alexandersson E. Phosphite protects against potato and tomato late blight in tropical climates and has varying toxicity depending on the Phytophthora infestans isolate. Crop Protection. 2019;121:139-146.

Dick JA, Dick, AA. Tomato seed disinfection with chlorine. Tomato solutions. Chatham, Ontario, Canada; 2014.

dos Santos CS, Ferreira INM, Chaves Filho JT. Efeito do extrato de plantas no controle de fungos do tomateiro. Revista Fragmentos de Cultura-Revista Interdisciplinar de Ciências Humanas. 2014;24:139-151.

Peruch LAM, da Silva ACF, Rebelo AM. Efeito da calda bordalesa e de produtos alternativos no manejo da requeima do tomateiro, sob cultivo orgânico, no litoral sul catarinense. Agropecuária Catarinense. 2008;21:60-65.

Domingues DP, dos Santos CA, Kowata-Dresch LS, de Araújo Reis C, de Araújo Fernandes MC, do Carmo, MGF. Sensibilidade de Stemphylium solani a extratos vegetais e caldas e controlo da doença no tomateiro em estufa. Revista de Ciências Agrárias. 2017;40:114-123.

Monteiro FP, Ogoshi C, Cardoso DA, Valdecir P, Pinto FAMF, Mallmann G. Development and validation of diagrammatic scales to assess septoriose in tomato. Plant Pathology & Quarantine. 2021b;11:115-124.

Hegde GM, Malligawad LH, Sreenivasa MN, Chetri BK. Role of plant growth promoting microbes in the control of fungal foliar diseases of tomato under protected cultivation. Egyptian Journal of Biological Pest Control. 2022;32:1-10.

Monteiro FP, Ogoshi C, Mallmann G. Chemical control of bacteria Xanthomonas hortorum pv. gardneri and Xanthomonas euvesicatoria pv. perforans in vitro. Plant Pathology & Quarantine. 2022;12:133-146.

Lisboa BB, Bochese CC, Vargas LK, Silveira JRP, Radin B, Oliveira AMRD. Eficiência de Trichoderma harzianum e Gliocladium viride na redução da incidência de Botrytis cinerea em tomateiro cultivado sob ambiente protegido. Ciência Rural. 2007;37:1255-1260.

Suárez YYJ, Velandia CAM, Prado AMC. Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta Biológica Colombiana. 2009;14:111-120.

Btissam M, Amina OT, Allal D. Effet du compost et de Trichoderma harzianum sur la suppression de la verticilliose de la tomate. Journal of Applied Biosciences. 2013;70:5531-5543.

Nascimento ADR. Chemical control of the bacterial spot in tomato for industrialprocessing: sensibility in isolated vitro and efficiency of products in seedlings and infield. Tese; 2009.

Vinas M, Mendez JC, Jiménez VM. 2020 – Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants. Scientia Horticulturae. 2020.265;109200.

Abbasi PA, Soltani N, Cuppels DA, Lazarovits G. Reduction of bacterial spot disease severity on tomato and pepper plants with foliar applications of ammonium lignosulfonate and potassium phosphate. Plant disease. 2002;86:1232-1236.

Lee SH, Shin H, Kim JH, Ryu KY, Kim HT, Cha B, Cha JS. Effect on colony growth inhibition of soil-borne fungal pathogens by available chlorine content in sodium hypochlorite. The Plant Pathology Journal. 2019;35:156.

Baptista MJ, Resende FV, Oliveira AR. Avaliação de produtos alternativos no manejo da pinta preta do tomateiro. Cadernos de Agroecologia. 2007;2:694-697.

Moraes WB, de Jesús Junior WC, Belan LL, de Azevedo Peixoto L, Pereira AJ. Aplicação foliar de fungicidas e produtos alternativos reduz a severidade do oídio do tomateiro. Nucleus. 2011;8:1-12.

Melo JC, dos Santos CA, de Araújo Fernandes MDC, do Carmo MGF. Caldas alternativas e fungicidas no controle da mancha-de-estenfílio do tomateiro. Agrarian. 2019;12:16-23.

Adams MR, Hall CJ. Growth inhibition of food‐borne pathogens by lactic and acetic acids and their mixtures. International Journal of Food Science & Technology. 1988;23:287-292.

Camili EC, Benato EA, Pascholati SF, Cia P. Vaporização de ácido acético para o controle pós-colheita de Botrytis cinerea em uva'Itália'. Revista Brasileira de Fruticultura. 2010;32:436-443.

Chen D, Shao M, Sun S, Liu T, Zhang H, Qin N, Zeng R, Song Y. Enhancement of jasmonate-mediated antiherbivore defense responses in tomato by acetic acid, a potent inducer for plant protection. Frontiers in plant science. 2019; 10: 764.

Vines JRL, Jenkins PD, Foyer CH, French MS, Scott IM. Physiological effects of peracetic acid on hydroponic tomato plants. Annals of applied biology. 2003; 143:153-159.

Srebernich SM. Using chlorine dioxide and peracetic acid as substitutes for sodium hypocloride in the sanitization of minimally processed green seasoning. Food Science and Technology. 2007;27:744-750.